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Spherical cap bubbles 
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We study the rise of a spherical cap bubble in both two- and three-dimensional 
unbounded regions. In particular we focus on the problem of finding steady state- 
solutions. We assume that the fluid is incompressible, inviscid and irrotational, and 
use two different models to approximate the turbulent wake behind the bubble. We 
demonstrate numerically that in the case of zero surface tension we have a 
continuous spectrum of rise velocities. When we add small surface tension to the 
problem, the degeneracy is broken via a solvability mechanism, and we obtain 
velocity selection. Our results are in good agreement with the existing experimental 
studies. 

1. Introduction 
The problem of a spherical cap bubble rising in an unbounded region of a fluid in 

two or three dimensions has been studied both theoretically and experimentally over 
the past few decades, see Collins (1965), Grace & Harrison (1967), Maneri & Zuber 
(1974), Davies & Taylor (1950), Hnat & Buckmaster (1976) and Collins ( 1 9 6 7 ~ ) .  (For 
additional references, see the review paper by Wegener & Parlange 1973.) 
Experimentally one always finds that the bubble rises at a constant speed after an 
initial acceleration. To date, there is no first-principles theory which determines this 
rise velocity for all the relevant experimental cases (especially for three-dimensional 
bubbles). 

Early theoretical treatments often ignored suface tension, which is indeed very 
small. However, it will be shown in this paper that the small surface tension 
perturbation is a singular one and it plays a crucial role in determining the rise 
velocity of the bubble. This point was first made by Vanden-Broeck (1986, 1988) in 
terms of two-dimensional spherical cap bubbles. We shall compare our numerical 
results with his later in this paper. 

In recent years, several authors, Vanden-Broeck (1984u, b ) ,  Couet & Strumolo 
(1987), Kessler & Levine ( 1 9 8 9 ~ )  and Levine & Yang (1990), have worked on the 
problem of an infinitely long bubble rising in a channel (two-dimensional) or a tube 
(three-dimensional). There it was found through numerical work that the bubble 
rising velocity is indeed determined by the surface tension, and the small-surface- 
tension limit is a singular perturbation of the zero-surface-tension situation (i.e. 
taking the limit of surface tension approaching zero is not the same as setting it to 
zero). The conclusions of the spherical cap bubble theory here resemble those of the 
infinitely long bubble in many ways. 

We now describe the notation we will use throughout this paper. The coordinate 
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axes x and y denote the horizontal and vertical directions respectively. Gravity is in 
the -$ direction. For the two-dimensional bubble, x and y are Cartesian coordinates. 
For the three-dimensional bubble, x and y should be regarded as cylindrical 
coordinates, i.e. x -+ r ,  y -+ x .  We choose our unit,s such that R, = g = p = 1,  where R, 
is the half-width of the bottom of the spherical cap bubble, g is the gravitational 
acceleration, and p is the density of the fluid. In these units, the dimensionless rise 
velocity u is just the Froude number of the flow, i.e. u = Fr,  = u*/(gR,)i, where u* 
is the physical rise velocity ; also, the dimensionless surface tension coefficient y is the 
inverse Eotovos number, i.e. y = y*/(pgR$), where y* is the dimensional surface 
tension coefficient. Note that there are two other lengths in this problem ; R,, which 
is the radius of curvature at the tip, and R,, which is the equivalent of volume. The 
experimental Froude numbers are often expressed in terms of these two lengths, i.e. 
Fr, = u*/(gR,)t and Fr, = u*/(gR,)f. We choose R, to be the unit length simply for 
computational convenience. Once the bubble profile is known, we can easily convert 
Fr, into Fr, and Frv, which can then be compared with experiments. 

2. Formulation 
Before describing our formulation of the bubble problem, we would like to  note a 

difference between the two-dimensional and three-dimensional cases. In  the two- 
dimensional bubble problem, both the stream function and potential function satisfy 
the Laplace equation, and form the imaginary and real parts of an analytic function. 
Thus the powerful tools of complex analysis can be used in this situation. Most of 
papers mentioned in the introduction, e.g. Vanden-Broeck (1984a, b,  1986, 1988) and 
Couet & Strumolo (1987), use this technique to  attack two-dimensional bubble 
problems. For the three-dimensional problem, this technique no longer applies 
because the stream function does not satisfy the Laplace equation (see (15)). Our 
formulation below in terms of Green’s function closely resembles those by Kessler & 
Levine (1989~)  and Levine & Yang (1990) for the bubble in a tube. One of the 
advantages of this approach is that the two- and three-dimensional cases can be 
treated in parallel. 

Let us first outline the assumptions that we will make for this problem. The first 
is that the fluid is inviscid. This is due to the experimental fact that the rise velocity 
(Froude number) of a spherical cap bubble is independent of the Reynolds number 
when the Reynolds number is large enough ( - loo), see Hnat & Buckmaster (1976) 
and Wegener & Parlange (1973). We next assume that the fluid is of constant density 
and irrotational outside the wake and bubble interior. The first part of this 
assumption is valid because the bubble rise velocity is much smaller than the speed 
of sound ; the secnd part is also very reasonable since the fluid is stationary before the 
bubble passes through. We also neglect the density of the gas inside the bubble. Since 
we are only considering the case of a spherical cap bubble rising in an unbounded 
region, the bubble will rise along a vertical path. Hence we can further assume that 
the flow is symmetric (two-dimensional) or axisymmetric (three-dimensional). The 
assumption of axisymmetry for the three-dimensional spherical cap bubble problem 
allows us to reduce the three-dimensional problem into an effective two-dimensional 
one. 

Because the bubble rises at a constant speed, one can transform to a moving frame 
and look for steady-state solutions. However, it is clear from experiments that there 
is a turbulent wake behind a rising spherical cap bubble a t  high Reynolds number, 
see Van Dyke (1982) and Maxworthy (1967), and the entire flow is not stationary 
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FIGURE 1.  Sketch of the bubble shape and wake boundary for the stagnant wake model. 

even in the moving frame. In this paper, we shall nonetheless assume that the flow 
is stationary outside the wake and bubble interior. Instead of dealing with a realistic 
turbulent wake, we approximate the wake by two different models, which makes 
sense because we expect the bubble rise velocity to be determined by the bubble tip 
region and hence should be insensitive to the exact form of the wake. The 
experimental evidence supporting this idea comes from the work of Grace & Harrison 
(1967). They placed a vertical rod in the path of a spherical cap bubble, and found 
that the rod affected the bubble most when located exactly at  the centre. 
Theoretically, the action of the surface tension as a singular perturbation will be 
most crucial near the tip, as seen from the approximate model by Kessler & Levine 
(1989a). The two models that we shall use are the stagnant wake model and the 
vertical wake model, which we now describe. 

The first model approximates the dynamic wake by a stagnant one (Vanden- 
Broeck 1986; Rippin & Davidson 1967), see figure 1. The balance of hydrostatic 
pressure inside the wake and the pressure outside tells us that the speed of the flow 
on the wake boundary is a constant, i.e. the wake boundary is a vortex sheet. 
Furthermore one can easily prove that this constant speed is the same as the flow 
speed at  infinity (we are in the moving frame), which is the bubble rising velocity u. 
In this model, the shape of the wake boundary is not known apriori, but the velocity 
distribution on the boundary is known. The wake shape has to be solved consistently 
with the bubble shape in the whole problem. However, the asymptotic shape 
(y+- X I )  of the stagnant wake is known (Gurevich 1965); in two dimensions it is 

x = a( - yp, (1) 
and in three-dimensions it is (also see Levinson 1946) 

x = a(-y)t/[ln (-y)]i, (2) 

where the coefficient a depends on the bubble shape. 
The second model approximates the wake shape by a vertical line extending to 

minus infinity (Vanden-Broeck 1988), see figure 2. There are several reasons to 
propose this model. First, the pictures taken by Maxworthy(1967) show us that the 
shape of the real bubble wake does look somewhat like this; secondly, there is one 
known analytic solution to this model, namely the Zhukovskii solution, see Vanden- 
Broeck (1988), Gurevich (1965) and Collins (1967 b). This solution tells us that when 
a two-dimensional spherical cap bubble with no surface tension rises at  a velocity of 
l/&, the bubble shape will be 

n 0 
L 0 

x: = -(O+Ssin20), y = --sin2O, x x 
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FIQURE 2. Sketch of the bubble shape and wake boundary for the vertical wake model. 

where the parameter 0 goes from 0 to in. Now, if one assumes that the fluid inside 
the wake is stagnant, then one immediately discovers that the pressure across the 
wake boundary is not continuous. For this reason, this model has historically been 
regarded as being completely unrealistic. We would like to suggest that since the 
wake is turbulent, fluctuations might be able to balance the pressure outside. Thus 
this model could be realistic, and in fact i t  will be shown later that it approximates 
the experimental data better than the stagnant wake model. In  this model, the shape 
of the wake boundary is known a priori, but the velocity distribution on the 
boundary is not known. The velocity distribution has to be solved consistently with 
the bubble shape in the whole problem. Nevertheless, one can easily show that the 
asymptotic velocity (y-t- a) on the wake boundary is just the bubble rise velocity 
u for both the two- and three-dimensional cases. 

For both models, the wake is required to attach to the top of the bubble smoothly, 
in the sense that the first derivative is continuous. 

With the above qualitative pictures in mind, we now formulate the spherical cap 
bubble problem quantitatively. We will do this first for the two-, then the three- 
dimensional bubble: the two formulations are analogous. We write both of them 
down here for completeness. 

2.1. The two-dimensional caae 
Since the velocity field is divergence free, we can define the stream function as 
follows : 

The irrotational condition gives us the following equation for $: 
0 = v x [$(x, y) i]. (4) 

Having derived the equation for $, let us determine the boundary conditions that 
$ should satisfy. Since the flow a t  infinity is uniformly slowing down, we have 

(6) 
- $Im = -ux. 
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On the bubble surface and the wake boundary, the stream function $ is a constant. 
We can let this constant be zero without loss of generality, i.e. 

II. L / ( Z )  = 09 (7) 
$ lfI-&) = 09 (8) 

where we denoted the bubble surface by y=q(z ) ,  and the wake boundary by 
y = c(x). Bernoulli’s law on the bubble surface for the stationary flow provides us 
with another boundary condition, 

Here K is the mean curvature of the surface, which can be written as 

7” 
( l + q ‘ 2 ) t ’  

K ( Z )  = - 

where 7’ and 7’‘ denote dy/dx and d2y/dx2 respectively. 
Had the bubble surface been given, we would have overspecified the boundary 

conditions. Since this is a free boundary problem, we can use the extra boundary 
condition (9) to determine the bubble shape. We will use Green’s function method to 
obtain integro-differential equations for the bubble shape q(r) .  The Green’s function 
in this case is 

1 (z - x’)2 + (y - y’)2 
47r (z+z’)2+(y-y’)2’ 

G(z,z’,y,y’) = --ln 

which is just the antisymmetrized (around the y-axis) free Green’s function for the 
two-dimensional Laplace equation. 

In  terms of this Green’s function, $ can be written as 

Since our Green’s function is antisymmetric, we only have to integrate over half of 
the free surface. Setting y = q(z), y = c(x)  and substituting (9) into (12), we obtain 
the set of integro-differential equations we want : 

-uz+fG(S,S,q(z), q(z’)) [2y~(z’)-2q(z’)]ids’ 

+ ~ ~ ~ G ( x , z ’ , n ( z ) , ~ ( 2 ’ ) ) w w k d s ’  = O ,  (13a) 

G(z, d, c(X), c ( X ’ ) )  ‘UwkdS‘ = 0. (13b) 

At  the arclength si, the bubble surface meets the wake. It is quite clear that these 
two equations are coupled. The first is valid for a point on the bubble surface, the 
second for a point on the wake boundary. The difference between the stagnant and 
the vertical wake models in (13) is that, for the former, 5 is unknown but Z),k is 
known ; for the latter, the situation is reversed. 
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2.2. The three-dimensional case 
Since the velocity field is divergence free and axisymmetric, the Stokes’ stream 
function (see Lamb (1932) can be defined as follows: 

where 4 is the unit vector in 
The irrotational condition 

the angle direction of a cylindrical coordinate system. 
gives us the following equation for $: 

Having derived the equation for $, let us determine the boundary conditions that 
$ should satisfy. Since the flow a t  infinity is uniformly slowing down, we have 

$ 1  co = --lux2 2 9  (16) 

II. l p / ( z )  = 09 (17 )  
$l(y-b(z) = 0. (18) 

On the bubble surface and the wake boundary, we have 

Bernoulli’s law on the bubble surface for the stationary flow provides us with 
another boundary condition, 

Here K is the mean curvature of the three-dimensional spherical-cap shaped surface, 
which can be written as 

71’ 71“ 
x( 1 + ?/y ( 1  + f ” ) ” ’  

K(X) = - 

We use Green’s function method to derive a pair of integro-differential equations 
for the bubble shape ~ ( x ) .  The free Green’s function for (15) in this case is 

1 [ (x-x’)2+ (y-y’)2 
G(x,  x’, y, y’) = - (22’)) &; 1 + 

2 K  2xx’ 

where Q; is the Legendre function of the second kind of order t.  

of integral-differential equations, 
The derivation is the same as the two-dimensional case and results in the final set 

- $ & + ~ G ( x ,  x ’ , ~ ( x ) ,  ~ ( x ’ ) )  [ 2 y ~ ( ~ ’ ) - 2 ~ y ( x ’ ) ] : d s ’  

G(x,  x’> q ( x ) ,  g(,’)) 2’wk ds’ = (22a)  
+ I:: 

- + x ~ + ~ G ( x , x ’ ,  [ ( x ) , ~ ( x ’ ) )  [ ~ Y K ( x ’ ) - ~ v ( x ’ ) ] ~ ~ s ’  

-I- G(X, XI, g ( X ) ,  [(x’)) 2’wk ds’ = 0. (22b)  

So far we have derived the set of integro-differential equations for both the two- 
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and three-dimensional spherical cap bubble problem. For a physically meaningful 
solution of the integro-differential equations (13) and (22) for each case, we must 
require 

We will proceed to solve numerically the integro-differential equations (13) and (22) 
with the boundary condition (23). 

7’ lz-o = 0. (23) 

3. Numerical procedures 
The two- and three-dimensional integro-differential equations (13) and (22) are 

solved by exactly the same numerical method. We first make an initial guess for the 
bubble shape and the wake shape or velocity which has the correct asymptotic 
behaviour far down the wake. We then modify the bubble shape by adding Ar] to the 
initial guess, and also modify the wake boundary or wake velocity (depending on 
which model one is using) by adding A{ or Avwk to their initial guesses. We discretize 
the interface with a fixed grid which becomes an equal-arclength grid downstream. 
This procedure replaces the integro-differential equation with a coupled set of 
nonlinear equations, see Kessler & Levine (1989a, b). 

The wake will always be divided into two parts. The lower part is fixed by using 
the corresponding asymptotic behaviour. For the two-dimensional problem, the 
wake height is chosen to be around 15; for the three-dimensional problem, it is 
around 10. The reason for using a shorter wave height in the latter case is that the 
Green’s function decays faster with respect to y (two-dimensional : y-2 ; three : Y - ~ ) .  
It turns out that the bubble tip properties are completely insensitive to the choice 
of the wake height. All the integrations in our programs are done using Simpson’s 
rule, and the derivatives are evaluated by the three-point rule. 

For the zero surface tension case, the independent variables are NbS& on the 
bubble surface, and Nwk A[ or Nwk Avwk on the wake boundary. The set of integro- 
differential equations (13) or (22) provides the equations to be satisfied (one for each 
point, Nbs on the bubble surface and Nwk on the wake boundary). The values of Nbs 
and Nwk we used in our calculation are about 50 and 90 respectively. We now have 
Nbs+Nwk variables and Nbs+Nwk equations, and we use the standard Newton’s 
method to  solve them. In fact for the stagnant wake model, we have one more 
variable, which is the coefficient in the form of the asymptotic shape (1) or (2). The 
requirement of tangential continuity on the wake boundary provides us with the 
additional equation needed. 

In the case of non-zero surface tension, we used the same method for the wake part 
as described before, but adopted a different numerical treatment for the bubble 
surface which we now describe. We will leave the variable vbs in the set of integro- 
differential equations (13) or (22) instead of substituting it using Bernoulli’s law (9) 
and (19). We now can vary not only Ar], but also Avbs. We next expand both Ar] and 
AvbS in term of Chebyshev polynomials. The coefficients of an expansion will 
typically converge rapidly for a well-behaved function. We choose the 2n coefficients 
of the expansion (n for Ar] and n for Av) to be the independent variables. We then pick 
n points uniformly among the Nbs discretized points on the bubble surface of the 
initial guess. The first integro-differential equation in the set (13) or (22) and 
Bernoulli’s law at these n points will provide us with 2n equations to be solved by 
Newton’s method. The typical values for n and Nba used in our program are about 
14 and 60. The tangential continuity at the connection point is also enforced in this 
case. 
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After obtaining the solution, we check whether the integro-differential equation 
and Bernoulli’s law mentioned above are satisfied on the other discretized points. 
The results are satisfactory ( -  except for the points around the connection 
point with the wake ( -  As y decreases, the discrepancy around the connection 
point becomes smaller. The physical reason for this discrepancy is that both models 
are ill-defined when the surface tension is non-zero. This is due, of course, to our 
oversimplified wake assumptions. This solution breakdown at the connection point 
does not affect the tip region much and hence can be neglected. We will return to 
expand on this point in $ 5 .  

The boundary condition (23) is usually relaxed when we solve the set of integro- 
differential equations. We check the boundary condition afterwards to see whether 
it is satisfied. If it is not satisfied, we then move around in the parameter space u and 
y until it is. 

We now make a few remarks with respect to our numerical methods. Our first 
remark is on the Green’s function (1  1 )  or (21) : it has a logarithmic singularity when 
x+x’ and y+ y‘. This singularity has to be subtracted out when performing the 
integral in (13) or (22). The logarithmic function In Is--s’I can be integrated explicitly 
along the interface. Thus we can add back in the integral contribution from the 
singular part of the Green’s function. We refer readers to the paper by Kessler & 
Levine (1989b) for more detailed information on this. The second remark is on the 
three-dimensional curvature formula (20). We will replace 7’ by 7’- (1 - x ) ~  7’ Iz-,, 
there. This is because we wish to allow solutions with non-zero slope at the bubble 
tip to be found. If we do not make this adjustment, the first term in the curvature 
will blow up. Since we are eventually interested only in those solutions with zero 
slope, this adjustment does not alter those ‘physical’ solutions. The final remark 
concerns error estimates for our numerical methods. It is quite difficult to get a 
precise upper bound on the error when there are so many ‘freedoms’ in the problem. 
In practice we vary the different discretization parameters in the problem, and find 
that the final answers are always within a few percent (about 5%).  

4. Results 
4.1. Zero surface tension 

To study the system at zero surface tension, we pick a rise velocity u and converge 
to a bubble solution. We find that the slope a t  the tip is always small (about 
for a wide range of u. This tells us that there is a continuous spectrum. In other words 
we cannot get a unique rise velocity from these models with zero surface tension. 

When we increase u, the volume of the bubble increases (see figures 3 and 4), and 
the radius of curvature at the bubble tip decreases (see figures 5 and 6). The curve 
in figure 5 or 6 will level off at  a value of u at  which the slope at the tip will change 
rapidly from almost zero to a negative number. The velocity at  which this occurs 
depends on the discretization of the bubble at the tip region. The larger the grid, the 
smaller this velocity will be. We interpret this phenomenon as due to the finite grid 
size which limits the tip curvature that we can resolve. As we decrease the grid size 
at the tip, the velocity at which level-off occurs will approach a limit value u*, at 
which the radius of curvature at the tip will be zero. Consequently, the slope at  the 
tip is no longer equal to zero when the rise velocity is larger than u*. This tells us that 
the set of integro-differential equation (13) or (22) with the boundary (23) has a 
continuous spectrum of rise velocity up to a certain velocity u* in the zero surface 
tension case. This is true for both the stagnant and the vertical wake modes. In fact 
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U 

FIGURE 3. Radius of volume us. the rise velocity for the two-dimensional spherical cap bubble 
with zero surface tension : -A-, stagnant wake; --[7 --, vertical wake. 

U 

FIQURE 4. Radius of volume vs. the rise velocity for the three-dimensional spherical cap bubble 
with zero surface tension. Notation aa figure 3. 

it is quite clear from figures 3 4  that the stagnant and vertical wake models have the 
same qualitative but different quantitative behaviour, as do the two- and three- 
dimensional bubbles. 

For the two-dimensional spherical cap bubble, our calculated u* of the stagnant 
wake model is about 1.29, and the u* of the vertical wake model is about 0.96, which 
are in agreement with the previous work by Vanden-Broeck (1986, 1988). The 
corresponding u* values for the three-dimensional spherical cap bubble problem are 
1.27 (stagnant wake) and 1.04 (vertical wake). 

From the results above we see that the Zhukovskii analytic solution (3) is only one 
particular solution among a family of solutions for the two-dimensional vertical wake 
model. 

4.2. Non-zero surface tension 
In the presence of surface tension, we fix the surface tension coefficient y ,  and vary 
the rise velocity u. We then relax the boundary condition (23) and solve the set of 
integro-differential equations. We find that within a narrow region of a certain rise 
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U 

FIGURE 5. Radius of curvature at the bubble tip VB. the rise velocity for the two-dimensional 
spherical cap bubble with zero surface tension. Notation as figure 3. 

U 

FIGURE 6. Radius of curvature at the bubble tip us. the rise velocity for the three-dimensional 
spherical cap bubble with zero surface tension. Notation as figure 3. 

velocity uo (Au - +0.03), the slope a t  the bubble tip changes by several orders of 
magnitude, from about - lop2 to about - - i.e. it  clearly goes through zero. 
Since the only physical solution is the one with the zero slope a t  the bubble tip, we 
see that the degeneracy of the zero surface tension situation is broken, i.e. there is a 
velocity selection. 

Since we are only interested in the limit of surface tension approaching zero, only 
a small surface tension is added to the problem. In  our calculation, we choose y to 
be 5 x A physical system corresponding to such a y could be a spherical cap air 
bubble of bottom diameter about 3 in. rising in water. The Reynolds number for such 
a flow is on the order of 10000. 

The major results of this study are summarized in table 1, where we compare the 
rise velocities (selected through the aforementioned mechanism) in our theory with 
the corresponding experimental ones. Bo in the table is the angle between the centre 
axis and the edge of the bubble measured from the centre of curvature a t  the tip. The 
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Two-dimensional Three-dimensional 

80 4l 
Fr, Fr, Fr, (deg.) Fr, Fr, Fr, (deg.) 

Stagnant 0.84 0.63 1.64 36 0.88 0.69 1.20 40 
Vertical 0.57 0.50 1.00 60 0.71 0.64 0.85 61 
Experimental 0.55 1.12 53 0.65 1.03 50 

TABLE I.  Comparison between the theoretical and experimental results 

two blank spaces mean that there are no experimental data available. The 
experimental results for a two-dimensional spherical cap bubble in the table for Pr, 
and 8, are from Collins (1965); Fr, are from Maneri & Zuber (1974), where we used 
the data presented in their figure 6(a )  extrapolated to zero spacing between the two 
vertical plates. The experimental results for a three-dimensional spherical cap bubble 
for Fr, are from Collins (1967 a)  ; Fr, are from several sources (Davies & Taylor 1950 ; 
Wegener & Parlange 1973; Hnat & Buckmaster 1976); 8, are from Wegener & 
Parlange (1973). 

From the table we see that the agreement between the theoretical and 
experimental results for Fr, is quite good, especially for the three-dimensional 
bubble. This is because Fr, only depends on the local properties of the bubble tip, 
which are lest influenced by the wake. Not surprisingly, the agreement between the 
theory and experiments for Fr, and 8, is less impressive, since the nature of the wake 
plays a relatively large role in these two quantities. It is obvious from the table that 
the vertical wake model approximates the experimental data better than the 
stagnant wake model. This is probably because the real spherical cap bubble wake 
shape resembles more closely that in the vertical wake model than that in the 
stagnant wake model, see pictures in Maxworthy (1967). 

For the two-dimensional spherical cap bubble problem, our calculated Fr, for the 
stagnant wake model is in agreement with figure 5 of Vanden-Broeck's (1986) 
paper;? for the vertical wake model, we also agree with Vanden-Broeck (1988) that 
the selected solution in the zero surface tension limit is precisely the Zhukovskii 
solution. 

We also made a different run using our computer programs with the same 
parameters except for a factor of two in the surface tension, i.e. y = 0.01. We found 
that the numbers given in table 1 stayed almost the same. This tells us that the 
selected rise velocity in the small-surface-tension limit is not especially sensitive to 
the surface tension. It is known that this is true for the problem of an infinitely long 
bubble rising in a channel (two dimensions) or a tube (three dimensions) ; in other 
words, the solution curve in the (u, y )  parameter plane intersects the u-axis with a 
90' angle, see Vanden-Broeck (1984b), Couet & Strumolo (1987), Kessler & Levine 
(1989a) and Levine & Yang (1990). This helps us to explain the experimental fact 
that when water is replaced by methanol (surface tension is three times smaller), no 
difference in the bubble rise velocity is exhibited, see Maneri & Zuber (1974). 

The curvature at the tip region is almost a constant for all four selected solutions 
(both models and dimensions). Thus they resemble spherical caps (at least in the tip 

t Vanden-Broeck used two different methods to obtain this Froude number. The results of these 
two methods did not agree with each other very well. This is probably because there is a hidden 
singularity in the problem. We will come back to this point in $5. 
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region). This is apparent in figures 7 and 8 where we compare the calculated bubble 
profiles with the corresponding experimental ones. The agreement is excellent in the 
tip region, whereas there are deviations further downstream where the influence of 
the wake becomes stronger. 

5. Discussion 
We now wish to discuss, in retrospect, our idea that the surface tension controls 

the rise velocity through its effect on the tip of the bubble. This was initially an 
assumption which motivated this approach, but now can be considered justified 
given the comparison in 54 between the experimental data and the results from the 
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two different theoretical models. We must make use of this assumption to disregard 
the discrepancy in the equation at  the bubblewake connection point when the 
surface tension is non-zero. We now outline exactly why the discrepancy appears. 

Let us first discuss the stagnant wake model. Here, the bottom shape of a spherical 
cap bubble plays no role in determining its top shape, as it does not enter the 
equations describing the top part. The shape of the bottom part of the bubble is 
balanced by the surface tension and the hydrostatic pressure drop, see Vanden- 
Broeck (1986). The equation describing the bottom shape is just a second order 
ordinary differential equation, with two boundary conditions : (a) the tangent is zero 
at x = 0;  (b)  it connects with the upper part at  x = 1. In the absence of surface 
tension, the bottom shape is just a straight line (plane). In general the derivatives for 
the top and bottom shapes are discontinuous at the connection point x = 1 (see figure 
1). The presence of a cusp when the surface tension is non-zero is certainly 
unphysical. 

The singularity was by no means obvious when we started solving the exterior 
problem (determining the top bubble profile and wake shape), because the bottom 
shape of the bubble did not enter the equations of the exterior problem. It turned out 
that we failed to find a solution when a small surface tension was added to the 
problem, whereas the same program converged quickly to a solution at zero surface 
tension. This implies a presence of a singularity when the surface tension is non-zero, 
even though this is not apparent from the equations (13) and (22). 

For the vertical wake model, the reason for the model breaking down when the 
surface tension is non-zero is more obvious. It is because the curvature a t  the 
connection point is infinite for all the zero-surface-tension solutions. We have 
numerical evidence to support this idea, but the easiest way to see it is to calculate 
the curvature for the Zhukovskii solution (3). Because of this, one is bound to have 
trouble near the connection point when the surface tension is non-zero. 

Hence, both models break down around the connection point when the surface 
tension is non-zero. Thus strictly speaking, one can no longer use them for such a 
case, since they are not mathematically consistent. In order to have a completely 
consistent theory which is valid under finite surface tension, new models must be 
used. However, since we are only interested in cases where surface tension is very 
small, we argue that we can make a simple modification to our original models to 
incorporate the surface tension effect : the method we used was to not enforce the set 
of integro-differential equations near the connection point. As we will discuss below, 
the final results are insensitive to what precise approximations one uses near the 
connection point. 

Vanden-Broeck (1986, 1988) has done calculations for both models of the two- 
dimensional spherical cap bubble problem using entirely different numerical 
methods. We have already compared our numerical results with his in the previous 
section. Here we take a look at the way he dealt with the singularities of the two 
models when the surface tension is non-zero. 

For the two-dimensional stagnant wake model, no additional measure was taken 
in the program when the surface tension became non-zero. As a result the method 
broke down when the surface tension was small. To be more precise, the primary 
branch of the solution ended before the surface tension reached zero. One should not 
expect this from the continuity property of the problem. This failure could be 
attributed to the fact that the presence of the additional singularity when the surface 
tension became non-zero was not captured in the original power series expansion of 
the zero surface tension solutions. 
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For the two-dimensional vertical wake model, a tangential discontinuity was 
introduced a t  the connection point when the surface tension became non-zero. One 
can easily show via a local analysis of the Laplace equation that the velocity a t  the 
connection point will be infinite in this case. Provided the proper limit is taken, it is 
then possible to balance the velocity-squared and the curvature terms in Bernoulli’s 
law. Vanden-Broeck was able to show numerically that the problem was well defined 
after introducing this discontinuity. We also tried this tangential discontinuity 
approach in our numerical method ; it did not work well. This is probably because 
Vanden-Broeck’s numerical method used the derivative of Bernoulli’s law, whereas 
we used Bernoulli’s law directly. I n  other words, the presence of two infinite terms 
in the equation could be factored out after taking the derivative. We eventually used 
a different approximation a t  the connection point when the surface tension was non- 
zero. Our approximation was from numerical point of view, namely we did not 
enforce the integro-differential equations rigorously near the connection point. 
Despite using a completely different numerical method and a completely different 
approximation a t  the connection point, our conclusions are the same as his. This 
clearly supports the idea that the bubble rise velocity is determined by the tip region, 
and it is insensitive to the approximation at  the connection point. 

The breakdown of these two models becomes more evident as the surface tension 
increases. The numerical evidence for this is that we can no longer find solutions 
using the modified method when y becomes large. Besides the reasons mentioned 
above, there is an additional physical reason behind this breakdown. In such 
situations, the bubble will probably cease to be spherical cap and will become 
ellipsoidal or spherical, see Haberman & Morton (1956), which cannot be studied by 
simple extension of the two models used here. 

We wish to thank J. Greene and C. Pozrikidis for some helpful suggestions. 
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